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Abstract

Off-policy policy evaluation (OPE) estimates the
outcome of a new policy using historical data
collected from a different policy. However, ex-
isting OPE methods cannot handle cases when
the new policy introduces novel actions. This is-
sue commonly occurs in real-world domains, like
healthcare, as new drugs and treatments are con-
tinuously developed. Novel actions necessitate
on-policy data collection, which can be burden-
some and expensive if the outcome of interest
takes a substantial amount of time to observe–for
example, in multi-year clinical trials. This raises
a key question of how to predict the long-term
outcome of a policy after only observing its short-
term effects? Though in general this problem is
intractable, under some surrogacy conditions, the
short-term on-policy data can be combined with
the long-term historical data to make accurate pre-
dictions about the new policy’s long-term value.
In two simulated healthcare examples–HIV and
sepsis management–we show that our estimators
can provide accurate predictions about the policy
value only after observing 10% of the full horizon
data. We also provide finite sample analysis of
our doubly robust estimators.

1. Introduction
Policy evaluation of long-term outcomes under a new target
policy using historical data collected under a different be-
havior policy is broadly investigated in offline reinforcement
learning (Dudı́k et al., 2011; Thomas & Brunskill, 2016;
Levine et al., 2020). Off-policy policy evaluation (OPE)
methods rely on shared coverage of the state and action
spaces taken by a behavioral policy and a new target policy.
However, in real-world practices, with rapid technological
advances, new actions are constantly being developed and
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Figure 1. We are interested in the task of predicting the patient’s
long-term outcome only after a short observation window. The
standard surrogacy assumption (Athey et al., 2019) fails due to the
red trajectory where later decisions cause a very different outcome
than other trajectories with the same initial h observations. In this
work we leverage a narrower definition of surrogacy similar to
Battocchi et al. (2021), and show it enables us to perform effective
policy evaluation.

tested to enhance the efficacy of policies. When the cover-
age assumption is violated due to the introduction of novel
actions, existing methods cannot be directly applied and
provide reliable estimates of the target policy’s value. This
requires testing the new policy, which generally take a long
horizon to validate, such as several years for a new drug in
clinical trials.

Naively deploying the new policy to observe its long-term
outcome can be burdensome and expensive. Especially in
high-stake domains like healthcare, the outcome of interest
takes a substantial amount of time to observe. Determining
the policy’s value based only on its short-term effect may
also be misleading; for example, patients may respond well
to aggressive cancer treatments in the short term, but the
long-term health effects may be suboptimal, and even harm-
ful (Morgan & Rubin, 1998). Many other domains, such
as education and e-commerce, also face similar challenges.
For example, it is common to measure the impact of using
an intelligent tutoring system over the entire school year by
the end-of-year assessments (Zheng et al., 2019), and the
impact of ads or promotions over a multi-month customer
churn or engagement (Zhang et al., 2023). While the new
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policy’s long-term outcome is unknown or expensive to ob-
serve, one may be able to estimate the long-term outcome
using some available data collected under a different policy
with both short- and long-term outcomes. Naturally, this
has led to the interest in estimating the long-term outcome
of a target policy using its short-term data and full-horizon
historical data of a different policy and prior works have
achieved inspiring results under specific assumptions (Saito
et al., 2024; Cheng et al., 2021; Tang et al., 2022; Zhang
et al., 2023; Tran et al., 2024; Shi et al., 2023)

Without further assumption, this problem is intractable to
solve for sequential policies taking different actions over a
long horizon. As a simple adversarial example of why this is
infeasible to solve without structural assumptions, consider
two deterministic policies that go through the same chain of
states except at the last time-step. One policy leads to the
optimal last state with a reward of 100, and the other policy
leads to the suboptimal state with a zero reward. Since both
policies have identical effects on the states until the last step,
they require observing for the full-horizon in order to be
distinguished from each other.

One possible structural assumption to make is surrogate
index, which is well studied in causal inference and econo-
metrics (Athey et al., 2019; 2024). In this framework, we
assume “surrogates” observed from a short horizon make
the long-term outcome independent of future actions. This
is a very strong assumption to make in sequential decision-
making settings that are our primary focus. In the above
adversarial example, surrogacy only holds with the full hori-
zon. In an effort to relax this assumption, Battocchi et al.
(2021) introduces a “dynamic invariance” assumption. They
define a behavioral policy and a new target policy, and re-
quire that the behavioral policy’s estimand and the target
policy’s estimand have the same relationship with the surro-
gates. We make a similar assumption but for the purpose of
estimating the long-term value of a sequential policy rather
than the delayed effect of a single-step intervention.

We propose two estimators to tackle the new empirical prob-
lem, i.e., estimating values of long-term sequential policies
with short-term data: one based on weighted regression
and the other using doubly robust methods to estimate the
long-term policy value using the short-term data and the his-
torical data from a behavioral policy. Our estimators operate
under the assumption that conditioned on the short-horizon
state trajectories, the expected future returns of the new pol-
icy matches the expected future returns of the behavioral
policy. We call the short-horizon state trajectories “softer
surrogates.” While we will shortly discuss this in greater
depth, we briefly give some motivating scenarios where this
is plausible, which are visualized in Figure 1.

Consider two treatment regimes: with the first treatment,
half of the patient population responds well to the treatment

(top trajectories in Fig. 1) and the other half struggles to re-
cover (bottom trajectories). A new drug is introduced which
works well for 20% of the previously struggling patients.
These treatments lead to different distributions of patient
outcomes–first treatment works for 50% and the second
treatment works for 70%–but importantly observe that if
the patients are improved after the initial 5 days of the treat-
ment, they will continue to observe positive effects as long
as they are continued to be treated. In other words, given the
first 5 days observations, both treatment regimes have the
same expected future returns. However, the standard surro-
gacy assumption would require an even stronger condition
that the patients who are recovering after the 5 days will
experience the same future returns even if they stop their
treatment after the initial period. This example highlights
that our proposed assumption is much more realistic than
the standard surrogate assumption.

Even when the soft surrogate condition does not hold, and
therefore, our estimators may have some bias, our empirical
results on the simulators of HIV treatment (Ernst et al.,
2006) and sepsis management (Oberst & Sontag, 2019)
show that our methods can still produce accurate estimates
of the policy’s long-term value. While one might expect
this to work only when the soft surrogates are constructed
from relatively long-horizon observations, our experiments
show that even with only 10% of the full horizon data, our
estimators can accurately predict whether the new policy’s
expected returns will outperform the behavioral policy’s
with significant p-values < 10−6 and achieve lower mean-
squared-errors compared to existing baselines.

Our work tackles the important problem of estimating long
term policy value with novel actions, which cannot be han-
dled by existing OPE methods and is expensive to solve with
Monte Carlo sampling. We propose estimators based on
soft surrogates constructed from short-horizon data of the
new policy and leverage long-horizon data of the behavioral
policy in learning these estimators by relaxing the standard
surrogacy assumption. We provide finite sample analysis
of our estimators based on doubly robust methods (Cher-
nozhukov et al., 2018), which may be of independent inter-
est, and empirical results in clinical simulators of HIV and
sepsis treatment, showcasing the promising application of
our methods to realistic domains.

2. Related Work
A powerful approach to predicting the long-term outcomes
of novel interventions comes from seminal work on surro-
gacy (Prentice, 1989; Athey et al., 2019; Saito et al., 2024).
The surrogacy assumption (or surrogate index) is when one
or more intermediate variables render a past intervention
independent of the delayed (future) outcome. In such work,
historical data is used to learn estimators for predicting
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the long-term outcome given the short-term surrogate ob-
servations, and these estimators are then applied to new
short-term observations for a new intervention. These ideas
have been more recently used with machine learning meth-
ods (Cheng et al., 2021; Zhang et al., 2023). Other papers
have improved the surrogate methods to be more robust even
when surrogacy does not strictly hold (Saito et al., 2024;
Kallus & Mao, 2024), and some work has leveraged sur-
rogates while actively exploring in a delayed multi-armed
bandit setting (Grover et al., 2018; McDonald et al., 2023).
Almost all such work has focused on when there is a single
intervention, followed by surrogate measures, and then a de-
layed outcome. In contrast, our aim is to estimate the value
of a sequential RL policy that will continue to influence
later states and rewards after the short observation window.

To our knowledge, there has been very little work on the
setting we consider of combining novel actions and long-
term policy value estimation. Empirically, Severson et al.
(2019) showed that domain-specific feature engineering
can be done to predict battery lifetime given short-term
data, and Attia et al. (2020) built on this work by apply-
ing Bayesian optimization to quickly learn good charging
protocols. Likely most similar to our work is Battocchi
et al. (2021) which used surrogate indices from short-term
data to estimate the impact of a novel action. Their focus is
on estimating the long-term performance of a single action
followed by no further interventions. In contrast, we are
interested in RL policies which continue to take different
actions in future horizons, rather than having the effects of
the old actions persist over time.

Ultimately, we show that this problem can be framed as
inference on a linear functional of a regression function
under a covariate shift. From this perspective it falls in the
general setting analyzed in Chernozhukov et al. (2023). We
show how the techniques in Chernozhukov et al. (2023) can
be utilized to provide unbiased and doubly robust estima-
tors that allow for the construction of asymptotically valid
confidence intervals, under assumptions on the achievable
estimation rates for nuisance parameters (e.g. value func-
tion, density ratio). One technical contribution of our work
is to provide finite sample high-probability analogues of
the asymptotic results given by Chernozhukov et al. (2023)
in the case of covariate shift. Our results provide estima-
tion rates with exponential tails, which is not covered by
prior work with finite sample analysis (Chernozhukov et al.,
2022), and for any estimation rate regime of the nuisance
components, which can be of independent interest.

3. Problem Setting & Notation
We consider an H-step sequential decision process consist-
ing of states S and actions A, and use t to denote the time-
step. We allow for non-Markov decision processes where

the transition dynamics is defined as a function of all past
states and actions, P (st+1|s0, a0, ..., st, at) as the Markov
assumption is not required by our estimators. We define the
reward as a function of states R(s), and the returns G as
the sum of per-step rewards over the full H-step horizon.
We define the trajectory only as a sequence of states and
rewards (excluding the actions), τ0:t = (s0, r0, ..., st, rt),
and similarly, τh:H denotes the partial trajectory from h to
H . Policy is a mapping from states to actions: π : S 7→ A,
and the corresponding policy value is the expected returns
of executing this policy from some initial state distribution
d0 : S 7→ [0, 1]: V π = Eτ0:H∼π,d0

[
∑H

t=0 rt]. In order to
incorporate novel actions, we additionally define A+, which
need not overlap with A.

We assume the historical data Db is collected under a behav-
ioral policy πb, which consists of (τ0:h, τh:H , G) represent-
ing the short-horizon trajectory, the long-horizon trajectory,
and the returns. Now, we are given a new policy to evaluate
(target policy): πe : S 7→ A+, and the goal is to predict the
new policy’s value V πe under the same initial state distribu-
tion only using the short-term data of the new policy. We
call this short-term on-policy data De.

4. Assumption
Before introducing our estimators, we first describe the
assumptions that will enable the estimation of the long-
term policy value only using short-horizon data even when
the action spaces differ between the new policy and the
behavioral policy.

Assumption 4.1. The reward is only a function of states, or
a history of states.

Especially in healthcare domains (Oberst & Sontag, 2019;
Adams et al., 2004), where states represent the patient’s
medical conditions, rewards are defined in terms of the
patient’s states. Similarly in education, states may represent
student’s knowledge (Mu et al., 2020), where it’s natural to
define reward based on student’s knowledge acquisition.

Assumption 4.2. (Soft surrogacy) Let τ0:h be the initial
h-step trajectory, and τh:H be the remaining trajectory. The
target policy πe and the historical policy πb satisfy the fol-
lowing relationship with τ0:h:

Eτh:H∼πe

[
H∑
t=h

rt|τ0:h

]
= Eτh:H∼πb

[
H∑
t=h

rt|τ0:h

]
(1)

Conditioned on the initial sequence τ0:h, the expected future
returns under the new policy is the same as the expected
future returns under the behavioral policy. Similar condition
has been considered by prior work (Battocchi et al., 2021).
It’s important to highlight that the future trajectories τh:H
may differ between πb and πe as long as their sum of rewards
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matches. One sufficient, but not necessary, condition of
Assumption 4.2 is if V πb

H−h(sh) = V πe

H−h(sh).

To show that this is a relaxed version of the surrogacy as-
sumption, we compare Assumption 4.2 to the standard surro-
gacy assumption if it were applied to sequential RL policies,
which would be ∀π, π′ ∈ Π

Eτh:H∼π

[
H∑
t=h

rt|τ0:h

]
= Eτh:H∼π′

[
H∑
t=h

rt|τ0:h

]
(2)

We make an important observation that with the large action
spaces and flexible policy classes, the surrogacy assumption
in Equation (2) will not hold in most RL settings. However,
we can relax this assumption to focus on a specific target
policy and a behavioral policy rather than any realizable
policy in the given policy class. While our theory relies on
Assumption 4.2, our empirical results with the clinical sim-
ulators of HIV and Sepsis management suggest that even
when the soft surrogacy assumption is violated, our esti-
mators can give reliable estimates of the long-term policy
value with short-term data. In non-healthcare settings, Sev-
erson et al. (2019); Attia et al. (2020) have considered a
similar empirical condition to build a prediction model of
the battery life time given the short-term discharge data.

Assumption 4.3. The behavioral policy πb covers the dis-
tribution of short-horizon trajectories generated under the
new target policy πe such that

p(τ0:h|πe)

p(τ0:h|πb)
> 0 ∀p(τ0:h|πe) > 0 (3)

This is analogous to the state and action coverage in offline
RL, which requires πb(.|s) > 0 ∀πe(.|s) > 0 (Liu et al.,
2022).

5. Estimators
We are interested in estimating values of long-term sequen-
tial policies with short-term on-policy data and long-term
off-policy data. Algorithm 1 shows how we leverage the
historical data along with the limited on-policy samples to
handle estimation. We propose two kinds of regression mod-
els: unweighted and weighted, and two policy value estima-
tion methods: one directly from the regression outputs and
the other based on double machine learning (Chernozhukov
et al., 2018), and study their theoretical (Section 6) and
empirical properties (Section 7).

5.1. Soft surrogate estimator

First, we propose a regression model that takes in the short-
horizon trajectory as inputs and predicts the full-horizon
outcome. Specifically, the regressor f is learned to predict

Algorithm 1 Long-term policy value estimation with soft
surrogates

Input: long-term historical data Db, new target policy
πe, De = ∅, experiment budget B
for i = 1 to B do

Run πe for short-horizon of h steps.
Collect τ0:h ∼ πe into De.

end for
Train a regression model f̂ using Db (Eq. 4, 6).
Estimate the long-term policy value V̂ πe (Eq. 5, 7-8).
Return: V̂ πe

G given τ0:h in the historical data Db.

fsoft = argmin
f

E(τ0:h,G)∼Db
[f(τ0:h)−G]2. (4)

The long-term value of a new policy πe is computed by
averaging fsoft across the short-horizon trajectories in De:

V̂ πe

soft =
1

|De|
∑

τ0:h∈De

fsoft(τ0:h). (5)

While fsoft can be learned directly from Db, it may be help-
ful to re-weight the loss to prioritize accurate predictions
over the short-horizon trajectories that are most likely to
occur under the target policy. To accomplish this, we use
weighted regression methods (Sugiyama et al., 2011; 2007),
which first estimate the density ratio of the trajectories under
the target policy and the behavioral policy, then re-weight
the losses according to the estimated density ratios. We
follow the prior work by Sugiyama et al. (2011) in formu-
lating the problem of density ratio estimation as learning
a classifier h(τ0:h) to predict if the sample trajectory came
from the behavioral policy or the target policy. This yields
the weighted regression model

fw-soft = argmin
f

E(τ0:h,G)∼Db

[
ĥ(τ0:h) (f(τ0:h)−G)

2
]
,

(6)
where ĥ(τ0:h) =

p(τ0:h|πe)
p(τ0:h|πb)

. To predict the long-term policy
value, we replace fsoft in equation (4) with fw-soft and call
this estimator V̂ πe

w-soft. Our empirical results compare the
weighted and the unweighted regression estimates.

5.2. Doubly robust soft surrogate estimator

We present an estimator based on double machine learning
(Chernozhukov et al., 2023), or de-biased machine learning
(Battocchi et al., 2021; Kallus & Mao, 2024) to improve the
estimator presented in Section 5.1 to be robust to potential
errors in the regression model or the density ratio estimator.

Following k-fold cross fitting (Chernozhukov et al., 2023),
we split the dataset Db into K folds of equal size. Let
D(k)

b be the samples in fold k and D̄(k)
b be its complement.
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Similarly, split the dataset De into K folds, and use the
same notations D(k)

e and D̄(k)
e to denote the k-th fold and its

complement. Let ĥ(k) and f̂ (k) be the density ratio estimator
and the regression model trained on D̄(k). The k-th cross fit
estimate is

V̂ (k) =
1

|D(k)
b |

∑
(τ0:h,G)∈D(k)

b

ĥ(k)(τ0:h)
(
G− f̂ (k)(τ0:h)

)
+

1

|D(k)
e |

∑
τ0:h∈D(k)

e

f̂ (k)(τ0:h), (7)

where the first sum is over a subset of the historical data
gathered by πb, and the second term is over a subset of the
short-horizon on-policy data sampled from the target policy
πe. The second term serves as a baseline and is a slight
departure from the standard double machine learning, since
here we have access to limited on-policy data.

The final estimate of the long-term policy value is the aver-
age across all cross-fit estimates:

V̂ πe

dr =
1

K

k∑
i=1

V̂ (k) (8)

Similarly as before, f̂ (k) in Equation (7) can be either the
unweighted (Equation 6) or the weighted (Equation 4) re-
gression model. Depending on the choice between Equation
(5) and Equation (8) as well as the regression model, there
are 4 possible estimators for the target policy–namely, (i)
soft surrogate estimator V̂soft (unweighted by default), (ii)
weighted soft surrogate estimator V̂W-soft, (iii) doubly robust
estimator V̂dr-soft, and (iv) doubly robust weighted estimator
V̂dr-w-soft. Our toy example compares the robustness of these
estimators to model mis-specification, while our clinical
simulation results demonstrate their usefulness in realistic
scenarios even with possible violations of Assumption 4.2.

6. Theory
We focus on the finite sample analysis of V̂ πe

dr , which may be
of independent interest. Closest prior work (Chernozhukov
et al., 2022) also gives a finite sample bound, but our result
shows exponential tails in the covariate shift settings. Our
analysis depends on the following L2 errors between the
estimated nuisance parameters (f̂ , ĥ) and the true nuisance
parameters (f, h). For notational simplicity, we drop the
subscript from the short-horizon trajectory τ0:h. For detailed
exposition, review Appendix A.

ϵe =

√
Eτ∼πe

[(
f̂ (k)(τ)− f(τ)

)2]
(9)

ϵb =

√
Eτ∼πb

[(
f̂ (k)(τ)− f(τ)

)2]
(10)

ϵh =

√
Eτ∼πb

[(
ĥ(k)(τ)− h(τ)

)2]
(11)

Note that we are defining these errors with respect to the
two different data distributions: Expression (9) depends on
the short-horizon on-policy data, while (10) and (11) depend
on the historical data distribution.

Theorem 6.1 (Variance-Based Rate for DR). Assume that
|G|, |f (k)(τ)|, |f(τ)| are asymptotically bounded by C1H

and ĥ(k)(τ), h(τ) are asymptotically bounded by C2, where
C1 and C2 are constants. Under Assumptions 4.2 and 4.3,
w.p. at least 1− δ:

|V̂ πe

dr − V πe | ≤

√
2Varτ∼πe

(f(τ)) log(4K/δ)

|De|

+

√
2Eτ∼πb

[h(τ)2 (G− f(τ))2] log(4K/δ)

|Db|

+
1

K

K∑
k=1

ϵb · ϵh +
2HK log(4K/δ)

|De|︸ ︷︷ ︸
(4)

+ max
k

ϵe

√
2K log(4K/δ)

|De|︸ ︷︷ ︸
depends on consistency of f̂ w.r.t. πe

+
4C1C2HK log(4K/δ)

|Db|︸ ︷︷ ︸
(6)

+3C1Hmax
k

{ϵb +ϵh}

√
2K log(4K/δ)

|Db|︸ ︷︷ ︸
depends on consistency of f̂ , k̂ w.r.t. πb

We are interested in understanding when the first two terms,
which depend on the variance under the true, unknown nui-
sance parameters f, h, dominate the bound. Note that the
terms (4) and (6) are dominated by the first two terms since
these have a slower rate dependence on |Db| and |De|. As
long as f̂ is consistent for the target policy’s data distribu-
tion, the fifth term is dominated by the first term. Similarly,
if the nuisance parameters, f̂ , ĥ, are consistent under the
behavioral policy’s data distribution, the last term is domi-
nated by the second term. Finally the third term is a product
of the errors under the behavioral policy’s data distribution.
For this to be of lower order than the first two terms, it may
be particularly important for f̂ to behave well under the
behavioral policy’s distribution. This suggests that fitting f̂
using unweighted regression in Equation (4) may be benefi-
cial to the weighted regression. We include the full proof in
A.1 (bias) and A.2 (variance).

Corollary 6.2. If f̂ and ĥ are asymptotically consistent at
any rate, then V̂ πe

dr is consistent.

This is a direct result of Theorem 6.1 as the error terms go to
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zero asymptotically (see proof in A.3). We also characterize
the doubly robust property of V̂ πe

dr .

Theorem 6.3. Define the regression error as △(τ, f̂) =

f̂(τ) − f(τ) and the relative density ratio estimate as

δ(τ, ĥ) = ĥ(τ)
h(τ) . Under Assumptions 4.2 and 4.3, the bias of

V̂ πe

dr is V̂ πe

dr − V πe

=
1

K

K∑
k=1

Eτ∼πe

[
△(τ, f̂ (k))

(
1− δ(τ, ĥ(k))

)]
, (12)

which is the average of the product-bias terms across the K
folds.

Full proof is in A.5.
Corollary 6.4. If ∀τ , either f̂(τ) = f(τ) or ĥ(τ) = h(τ),
then V̂ πe

dr is unbiased.

This is a direct result of Theorem 6.3 when either △(τ, f̂) =

0 or δ(τ, ĥ) = 0.

While V̂ πe

soft is also a consistent estimator of V πe if the re-
gression model f is asymptotically consistent (proof in A.4),
the doubly robust estimator can provide some robustness
against regression bias. More broadly, it is often the case
that doubly robust estimators achieve semi-parametric effi-
ciency, but the regression estimators do not.

7. Experiments
First we show a toy example to demonstrate the robust-
ness of the doubly robust estimator to either the regression
or the density ratio estimator mis-specification that is con-
sistent with our theoretical understanding. Then we con-
duct extensive experiments on two clinical domains, HIV
treatment (Ernst et al., 2006) and sepsis management in
ICU (Oberst & Sontag, 2019).

7.1. The Robustness of the Proposed Estimator

We consider a toy domain with scalar (continuous) states
and the initial state distribution d0 evenly spread across the
interval [0, 1.5]. Transitions under the behavioral policy are
defined as:

st+1 =


st w.p 0.5
(−0.6 + 0.1u)st w.p 0.45, u ∼ Unif [0, 1)

1.5 otherwise
,

and transitions under the new target policy are

st+1 =

{
1.5 if st < 1.25

0 otherwise
.

Every state has an additive gaussian noise ∼ N(0, 0.1). We
define a quadratic relationship between the surrogate τ0:1

Table 1. MSE of estimators under regression or density ratio model
mis-specification (mean ± std across 200 seeds) .

Estimator Both correct Regressor Density ratio

Unweighted 0.002 (0.003) 0.914 (0.064) 0.002 (0.003)
Weighted 0.079 (0.085) 0.080 (0.068) 0.388 (0.728)
Doubly robust 0.008 (0.007) 0.008 (0.007) 0.006 (0.005)

observed after one step and the long-term return G (for sim-
plicity, we assume Assumption 4.2 holds with h = 1). The
on-policy data De has 100 samples of τ0:h and missing long-
term returns, and the historical data Db contains 5000 tuples
of (τ0:h, τh:H , G). The goal is to predict the average long-
term returns under the target policy πe by leveraging the
historical data. We evaluate the weighted, unweighted, and
doubly robust estimators in cases of regression or density
ratio estimator mis-specification.

In order to simulate regression model mis-specification, we
restrict the regression class to be linear, i.e., fθ(τ0:1) =
θ⊤[s0, s1], rather than the correctly specified quadratic form
fθ∗(τ0:1) = θ∗⊤[s0, s1, s

2
1]. While fθ is incorrect for de-

scribing the behavior under πb, it is still correct for πe which
induces s1 to always be either 0 or 1.5. We expect the un-
weighted regression to fail in this case because fθ cannot
fit Db, but the weighted regression, if the density ratio esti-
mates are correct, should still be able to handle the model
mis-specification by only fitting the points that are likely
under the target policy’s distribution.

In order to bias the density ratio estimates, we added a non-
zero Gaussian noise ∼ N(10, 10) to the denominator of
p(τ0:h|πe)
p(τ0:h|πb)

. We expect the doubly robust estimator to still be
accurate even with the incorrect density ratio estimates if
the regression model is correct.

Table 1 shows the doubly robust estimator is robust to ei-
ther the regression model or the density ratio estimator
mis-specification. As expected, the weighted regression
can still fit an accurate linear relationship to the training
points that are likely to occur under the target data distribu-
tion; but the unweighted regression suffers from the model
mis-specification. Interestingly, even when the regression
model is correct, if the density ratio estimates are biased, the
weighted regression, despite being the consistent estimator,
incurs large errors due to the limited training samples. The
doubly robust estimator on the other hand is unaffected by
the bias in density ratios as long as the regression model
is correct. In Appendix 5, we additionally show that the
effects of mis-specified density ratio estimates on V̂w-soft are
in/decreased by the training data size.
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7.2. Experiments on Clinical Domains

We now investigate the performance of our proposed
estimators–namely, soft surrogate estimators with weighted
and unweighted regression: V̂ πe

soft, V̂
πe

w-soft, and doubly robust
soft surrogate estimators also with weighted and unweighted
regression: V̂ πe

dr-soft, V̂
πe

dr-w-soft– in clinical simulators of HIV
treatment and sepsis management.

HIV treatment Human Immunodeficiency Virus (HIV) is
a retrovirus that can lead to the lethal Acquired Immune De-
ficiency Syndrome (AIDS) devastating a person’s immune
system. In the simulator designed by (Ernst et al., 2006),
the patient’s state is a 6-dimensional vector representing the
number of healthy and HIV-infected cells. Actions depend
on Reverse Transcriptase Inhibitors (RTI) and Protease In-
hibitors (PI). The behavioral policy chooses to administer
either small or high dosage of RTI, and or PI (action size =
4) while the new target policy replaces the small dosage with
zero. The motivation for designing such a target policy is to
evaluate whether minimizing the drug prescription can help
improve the patient’s outcomes by avoiding unnecessary
side-effects (Ernst et al., 2005). The reward is given at every
time step based on the number of free virus particles and the
count of the HIV-specific T cells. The target long-term value
is the sum of rewards across 200 time steps. We generate
2500 off-policy trajectories and only 500 on-policy samples
under the new policy.

Sepsis management in ICU Sepsis is a life-threatening
organ dysfunction and one of the leading causes of mor-
tality in the United States (Liu et al., 2014). We use the
simulator by (Oberst & Sontag, 2019), following the set-
tings in (Namkoong et al., 2020). The patient’s state is
represented by a binary indicator for diabetes, and four vital
signs– heart rate, blood pressure, oxygen concentration, glu-
cose level–that take values in a subset of {very high, high,
normal, low, very low}, leading to the state space of size
1440. The behavioral policy chooses from the two binary
treatments: antibiotics, and mechanical ventilation, mod-
eled after (Gao et al., 2024). The new target policy has
an additional option of vasopressors based on the imple-
mentation by Oberst & Sontag (2019), thus operating in
the larger action space of size 8. A reward of 0 or ±1 is
given based on whether the patient is neutral, discharged, or
dead. The full horizon length is 20 with a discount factor
of 0.99. We generate 5000 off-policy trajectories and 500
on-policy samples. Details about the environments and the
data-generation processes are in Appendix D.

7.3. Baselines

We compare our method to the following baselines: (i)
LOPE estimator (Saito et al., 2024), which also tries to
relax the surrogacy assumption by additionally accounting

for the action effects, (ii) Online-model based prediction,
which requires learning a transition dynamics model from
the limited on-policy data and extrapolating (unobserved)
future states, (iii) extrapolation of the average short-term
reward, (iv) extrapolation of the last short-term reward, and
(v) full-horizon Monte Carlo Sampling. MC sampling in
fact requires observing the full horizon outcome of the target
policy, so it would not be feasible in settings of our interest
where the long-term outcome takes a prohibitively long
amount of time to observe. We include this to benchmark
the performance of using a finite set of on-policy trajectories
to estimate the long-term policy value. Even though MC
estimates are unbiased, their variance may be high if the
on-policy data is limited, and using the short-horizon soft
surrogates may give smaller prediction errors due to the
variance-bias trade-off. For space, we include a discussion
of the baseline methods in Appendix C.

7.4. Results

We first specify how the ground truth long-term policy value
is defined. The HIV simulator assumes deterministic de-
cision processes, so V πe is computed as the average full-
horizon returns over the 500 initial patient states. In Sepsis
management, the transitions are stochastic, so we define
the ground truth V πe as the average MC estimates across
5000 roll-outs, which is 10 times larger than the on-policy
sample size. In both simulations, the (ground-truth) tar-
get policy’s value is higher than the historical policy’s. In
HIV, V πb = 337.01 while V πe = 404.87, and in Sepsis,
V πb = −0.178 compared to V πe = −0.006.

Table 2 shows the prediction mean squared errors made
by different estimators. Since the full horizon in
HIV is 200, we consider making predictions at h =
10(5%of the full horizon), 20(10%), and 50(25%), and in
Sepsis which spans 20 time steps, we consider h = 2(10%),
and 4(20%). Even though in these domains, the Assump-
tion 4.2, required for our theory, likely does not hold, we
still observe that even at one-tenth of the full horizon, our
estimators can yield accurate estimates of the long-term
policy value. In practice, this could mean a reduction of 20
week-long clinical trials to just 2 weeks before determining
the efficacy of new treatments.

In contrast, the baselines either yield poor estimates or re-
quire the short-horizon length to be fairly long (e.g., h = 50
in HIV) to make accurate predictions about the long-term
outcome. In HIV, after h = 50, most patients have entered
stable conditions, and therefore, extrapolating the last short-
term reward can predict the long-term value most accurately.
However, in Sepsis, where the patients receive no interme-
diate reward until they are either recovered or dead, using
the last reward to extrapolate performs poorly compared to
the regression estimates. Online-model based method also

7
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Table 2. MSE of different estimators in HIV and Sepsis. The first 4 rows with (*) show our proposed estimators. Mean and std (in
parentheses) for Sepsis are from 5 bootstrapping seeds. MC sampling is only evaluated in Sepsis due to the environment’s stochasticity.
The lowest MSE for a given h is bold.

HIV (H=200) Sepsis (H=20)

Estimator h=10 20 50 h=2 4

Weighted soft surrogate estimator (*) 71.51 53.21 53.85 0.03 (0.02) 0.01 (0.01)
Soft surrogate estimator (*) 68.15 67.15 57.96 0.04 (0.01) 0.02 (0.01)
DR soft surrogate (*) 68.32 64.86 58.15 0.04 (0.01) 0.01 (0.005)
DR weighted soft surrogate (*) 70.90 50.61 55.26 0.03 (0.01) 0.02 (0.004)

LOPE (Saito et al., 2024) 69.95 67.75 71.91 0.14 (0.25) 0.10 (0.01)
Online-model based 404.58 402.49 137.37 0.62 (0.01) 0.62 (0.01)
Average reward extrapolation 404.68 403.83 334.36 0.07 (0.01) 0.07 (0.01)
Last reward extrapolation 404.37 400.56 31.79 0.07 (0.01) 0.07 (0.01)
MC sampling - - - 0.02 (0.01) 0.02 (0.01)

performs poorly in both domains because the on-policy data
from the short horizon is too limited to learn an accurate
transition model. Furthermore, the dynamics model’s bias
propagates through the prediction of future states, which
may derail the overall prediction of future rewards if the
prediction horizon is long. Further discussion about the
experiment results is in Appendix D.4.

To show that our method generalizes to different target poli-
cies with varying policy values, we report the performance
of our estimators on 7 other policies in Table 8 and 9. We
observe that while the accuracy of the baseline methods
fluctuate across target policies and domains, our method
is able to provide consistently good estimates for different
policies in both HIV and Sepsis.

Rather than predicting the target policy’s long-term value
directly, decision-makers may be interested in quickly iden-
tifying if the new policy is likely to significantly out or
under-perform the behavioral policy. In such cases, we can
use the estimated policy values of the target policy to per-
form statistical testing comparing the new policy’s mean to
the behavioral policy’s mean value. Specifically, we have
500 estimates for the on-policy samples, and 2500 or 5000
observed long-term outcomes in the historical data, which
we can compare in the independent samples t-Test. We set
the null hypothesis to be: “The difference between the new
policy’s value and the behavioral policy’s value is not statis-
tically significant,” and evaluate how much on-policy data is
necessary for successfully rejecting the null. In Sepsis, us-
ing only the 10% of the full-horizon data, our estimators can
reject the null with p-values less than < 10−6, suggesting
that the difference between the new policy and the behav-
ioral policy’s long-term outcomes is statistically meaningful.
In HIV, V̂soft and V̂dr-w-soft give p-values less than < 10−6

when h = 10 and 20. When h = 50, all our estimators
successfully reject the null. These results suggest that our
approaches may be especially useful for quickly identifying

if the new policy is meaningfully different from the existing
policy.

8. Discussion & Conclusion
Other than healthcare, there are also scenarios in education
and online commerce, where a new policy introduces novel
actions but requires a substantial amount of time to evaluate.
For example, recent work has proposed new hybrid human-
AI approach in which all students are additionally supported
by human tutors when completing their online assignments
(Thomas et al., 2024; Abdelshiheed et al., 2024). Existing
datasets only with human tutors or AI tutors will fail to have
coverage for the hybrid actions prescribed by the new policy.
At the same time, testing this new approach can be burden-
some since it requires real-life student interaction over long
horizons. Our method offers an approach of estimating the
long-term outcome (e.g., end-of-year assessment scores)
based on “soft” short-term surrogates (e.g., student’s daily
activity logs).

We relax the surrogate index assumption that is difficult to
satisfy in most real-world scenarios by adopting the per-
spective of “dynamic invariance” (Battocchi et al., 2021)
to sequential RL policies. We propose estimators based on
soft surrogates and give a finite sample analysis of doubly
robust estimators in the setting of covariate shift. While
the assumptions required for theory may still be strong, our
empirical results show that in two key clinical simulators of
HIV and sepsis management, soft surrogate estimators can
reduce the observation window to be 10% of the original
long horizon.

Our experiments evaluate the estimators across different
values of h. How to select h, given the potential trade-off
between more signal about the new policy versus observa-
tion costs and increased covariate shift between the training
and the test data, is an interesting question for future work.
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Impact Statement
We believe our work could have meaningful applications in
healthcare and education domains, where the outcome of
interest usually takes a substantial amount of time to observe,
and the task of estimating the long-term policy value of a
new target policy commonly occurs as decision-makers are
constantly trying to find innovative ways to improve existing
policies for better patient and student outcomes.
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A. Theory
A.1. Implication of Assumption 4.2

We first define V πeπb as follows:

V πeπb ≡ E(s0,r0,s1,r1,...,sh,rh)∼πe

 h∑
j=1

rj+ E(sh+1,rh+1,...,sH ,rH)∼πb|(s0,r0,...,sh,rh)

H∑
j′=h+1

rj′

 ,

which has two terms: the first term is determined by the short-term data, and the second term represents the (unobserved)
long-term data from steps h+ 1, ...,H .

Then we apply Assumption 4.2 to the second term.

= E(s0,...,rh)∼πe

 h∑
j=1

rj + E(sh+1,...,rH)∼πe|(s0,...,rh)

H∑
j′=h+1

rj′

 = V πe ,

which is target estimand. This suggests that without the assumption, our estimators are predicting V̂ πeπb , and our analysis
hereafter applies to V πeπb . The soft surrogacy assumption allows establishing the necessary connection to the target
estimand, i.e., V πeπb = V πe

A.2. Baseline Regression Estimator

The second term of the DR estimator represents the estimated value of V πe using the regression estimate, and leverages the
on policy data samples from the target policy πe. We note that in our setting there are several choices for this quantity, and
below we briefly motivate our choice. (For notation simplicity, we define N = |Db| and M = |De|. To avoid confusion
with subscript h denoting the short-horizon length, we use a for density ratio, i.e., a(τh) ≡ p(τh|πe)

p(τh|πb)
.) Consider two possible

options:

1

N

N∑
j=1

f(τ jh)h(τ
j
h) ≈ Eτh∼πb

[f(τh)h(τh)] (13)

1

M

M∑
i=1

f(τ ih) ≈ Eτh∼πe
[f(τh)] (14)

Note the top expression uses the historical data and the bottom expression uses the on-policy short horizon data. We first
consider when the regressor f is accurate. Then the error in the estimate for Equation 14 is only due to the finite sample
approximation of the expectation, and will generally decrease as O( 1

M ).

We now consider the estimate in Equation 13 which uses the density ratio (short-horizon trajectory propensity weights)
a(τh). Let a∗ be the true (unknown) density ratio and a be the density ratio estimated using the historical data and on policy
short horizon data:

1

N

N∑
j=1

f(τ jh)a(τ
j
h) =

1

N

N∑
j=1

f(τ jh)a(τ
j
h)− f(τ jh)a

∗(τ jh) + f(τ jh)a
∗(τ jh) (15)

=
1

N

N∑
j=1

f(τ jh)
(
a(τ jh)− a∗(τ jh)

)
+ f(τ jh)a

∗(τ jh) (16)

= Eτh∼πb
[f(τh)a

∗(τh)] +

 1

N

N∑
j=1

f(τ jh)a
∗(τ jh)− Eτh∼πb

[f(τh)a
∗(τh)]


+

1

N

N∑
j=1

(
f(τ jh)(a(τ

j
h)− a∗(τ jh)

)
, (17)
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The second term is (like above) due to using finite samples to approximate an expectation and will therefore generally scale
with the size of the historical dataset, O( 1

N ). The third term involve the error in the density ratio. Estimating the density
ratio a uses short-horizon on policy data, and so in general we expect the estimation error in a to at best scale with O( 1

M ),
which implies we expect the overall error

1

N

N∑
j=1

f(τ jh)a(τ
j
h)− Eτh∼πb

[f(τh)a
∗(τh)] = O

(
1

N
+

1

M

)
. (18)

Therefore we expect the finite-sample error to be better by using the on-policy data estimator Equation 14. Note that in
standard offline reinforcement learning, no online data from the target policy is available and this ”baseline” term is quite
different: it is typically a weighting over the target policy, aka V πe(s) =

∑
a∈A p(a|s;πe)Q

πe(s, a) where Qπe is estimated
on the offline data from πb, and p(a|s;πe) is known because that is simply the new target policy.

A.3. DR Estimator Consistency

We first recall some prior results. First note that in our setting we are interested in solving a moment of the following form

θ0 = Eπe
[m(Z; f0)] f0(X) = Eπb

[Y | X] (19)

where m(Z; f0) is a linear functional of f0 and (with a slight abuse of notations), πe, πb denote two different distributions
of the data under the new target policy (i.e., short-term data) and the behavioral policy (i.e., long-term data). Here the goal
is a linear functional of a regression function f0 over the distribution of the on-policy short-term data, but we trained f0
as a regression over off-policy long-term data. Let a(x) = p(X;πe)

p(X;πb)
denote the density ratio of the two distributions. For

consistency of notations with prior work (Chernozhukov et al., 2018), we replace τh (input to the regression model) with X
and G (outcome variable of interest) with Y .

Our example is a special case of this where:

θ0 = Eπe [f0(X)] f0(X) = Eπb
[Y | X] (20)

where X is the vector of surrogates.

Any such linear functional has a doubly robust representation:

θ0 = Eπe [m(Z; f0)] + Eπb
[a0(X) (Y − f0(X))] (21)

where a0(X) is the Riesz representer (the element in the Hilbert space, that represents the linear functional as an inner
product; with respect to the L2 inner product over the distribution in ℓ). In other words, it is the function that has the property
that:

∀g : Eπe
[g(X)] = Eπb

[a0(X) g(X)] (22)

In our case, this Riesz representer is the density ratio:

a0(X) =
pπe

(X)

pπb
(X)

(23)

We now note that the error due to the nuisance parameters for the DR representation of such linear functionals can be
bounded by the error in the two nuisance parameters (i.e., f, a):

Theorem A.1 (Doubly Robust Bias Bound). (Chernozhukov et al., 2023) Consider the population moment function

M(g, a) = Eπe
[m(Z; g)] + Eπb

[a(X) (Y − g(X))]

Then we have that for all a:

M(g, a)−M(f0, a0) = Eπb
[(a(X)− a0(X)) (f0(X)− g(X))] (24)

≤ Eπb
[(a(k) − a0)

2]Eπb
[(f (k) − f0)

2] (25)
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Proof.

M(g, a)−M(f0, a0) = Eπe
[m(Z; g)] + Eπb

[a(X) (Y − g(X))]− Eπe
[m(Z; f0)]− Eπb

[a0(X) (Y − f0(X))]

= Eπe
[m(Z; g)] + Eπb

[a(X) (f0(X)− g(X))]− Eπe
[m(Z; f0)]− Eπb

[a0(X) (f0(X)− f0(X))]

= Eπe
[m(Z; g)] + Eπb

[a(X) (f0(X)− g(X))]− Eπe
[m(Z; f0)],

where the first equality follows from the definition of the moment M(g, a), and the second equality uses the tower rule of
expectation and the fact that f0(X) = Eπb

[Y | X].

Note that a0 satisfies that for all g:

Eπe [m(Z; g)] = Eπb
[a0(X) g(X)] (26)

we have that:

M(g, a)−M(f0, a0) = Eπb
[a0(X)g(X)] + Eπb

[a0(X) (f0(X)− f0(X))]− Eπb
[a0(X)f0(X)]

= Eπb
[a0(X) (g(X)− f0(X)) + a(X) (f0(X)− g(X))]

= Eπb
[(a(X)− a0(X)) (f0(X)− g(X))]

≤ Eπb
[(a(k) − a0)

2]Eπb
[(f (k) − f0)

2],

where the final inequality follows from the Cauchy–Schwarz inequality.

Recall Equations (9) ∼ (11) as defined in Section 6

ϵe ≡ ϵe(f
(k)) =

√
Eτh∼πe

[(f (k)(τh)− f0(τh))2]

ϵb ≡ ϵb(f
(k)) =

√
Eτh∼πb

[(f (k)(τh)− f0(τh))2]

ϵh ≡ ϵb(a
(k)) =

√
Eτh∼πb

[(a(τh)− a0(τh))2]

Theorem A.2 (Variance-Based Rate for DR). Assume that |G(τh)|, |f (k)(τh)|, |f0(τh)| are a.s. bounded by C1H and
a(k)(τh), a0(τh) are a.s. bounded by C2, where C1 and C2 are constants. Let N = |Db| (i.e., historical off-policy dataset)
and M = |De| (i.e., short-term on-policy dataset). Then w.p. at least 1− δ:

|V̂ πe

DR − V πe | ≤
√

2Varτh∼πe
(f0(τh)) log(4K/δ)

M
+

√
2Eτh∼πb

[a0(τh)2 (G(τh)− f0(τh))2] log(4K/δ)

N

+
1

K

K∑
k=1

ϵb(f
(k)) · ϵb(a(k)) +

2HK log(4K/δ)

M
+max

k
ϵe(f

(k))

√
2K log(4K/δ)

M

+
4C1C2HK log(4K/δ)

N
+ 3C1Hmax

k

{
ϵb(f

(k)) +ϵb(a
(k))
}√2K log(4K/δ)

N

13
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Proof. We can write:

V̂ πe

DR − V πe =
1

K

K∑
k=1

 1

|Ie ∩ Ik|
∑

i∈Ie∩Ik

(f (k)(Zi)− V πe) +
1

|I
b
∩ Ik|

∑
i∈Ib∩Ik

a(k)(Zi) (Gi − f (k)(Zi))︸ ︷︷ ︸
≜Bi(f(k),a(k))


=

1

K

K∑
k=1

(
1

|Ie ∩ Ik|
∑

i∈Ie∩Ik

(f0(Zi)− V πe) +
1

|Ib ∩ Ik|
∑

i∈Ib∩Ik

Bi(f0, a0)

)

+
1

K

K∑
k=1

(
1

|Ie ∩ Ik|
∑

i∈Ie∩Ik

(f (k)(Zi)− f0(Zi)) +
1

|Ib ∩ Ik|
∑

i∈Ib∩Ik

(Bi(f
(k), a(k))−Bi(f0, a0))

)

=
1

M

∑
i∈Ie

(f0(Zi)− V πe) +
1

N

∑
i∈Ib

Bi(f0, a0)

+
1

K

K∑
k=1

(
1

|Ie ∩ Ik|
∑

i∈Ie∩Ik

(f (k)(Zi)− f0(Zi)) +
1

|Ib ∩ Ik|
∑

i∈Ib∩Ik

(Bi(f
(k), a(k))−Bi(f0, a0))

)
The first term is a sum of M i.i.d. mean-zero random variables, since V πe = EX∼πe

[f0(X)]. Hence, by a Bernstein bound,
we have that, w.p. 1− δ:∣∣∣∣∣ 1M ∑

i∈Ie

(f0(Zi)− V πe)

∣∣∣∣∣ ≤
√

2VarX∼πe
(f0) log(1/δ)

M
+

2H log(1/δ)

M
≜ E1(δ) (27)

Similarly, the second term is the sum of N i.i.d. mean-zero random variables, since EZ∼πb
[G | Z] = f0(Z). Hence, by a

Bernstein bound, we have that, w.p. 1− δ:∣∣∣∣∣ 1N ∑
i∈Ib

Bi(f0, a0)

∣∣∣∣∣ ≤
√

2Varπb
(B(f0, a0)) log(1/δ)

N
+

2H2 log(1/δ)

N
(28)

=

√
2Eπb

[a0(Z)2(G− f0(Z))2] log(1/δ)

N
+

2H2 log(1/δ)

N
≜ E2(δ) (29)

For each fold k, let:

∆̂k(f) =
1

|Ie ∩ Ik|
∑

i∈Ie∩Ik

(f(Zi)− f0(Zi)) ∆(g) = E[∆̂k(g)] = Eπe
[f(X)− f0(X)] (30)

Λ̂k(f, a) =
1

|Ib ∩ Ik|
∑

i∈Ib∩Ik

(Bi(f, a)−Bi(f0, a0)) Λ(g) = E[Λ̂k(f)] = Eπb
[a(Z) (G(Z)− f(Z))] (31)

Conditional on the folds (I1, . . . , IK), and on Ie, Ib and on the estimates f (k), α̂(k), we have that ∆̂k(f
(k)), is an average of

|Ik ∩ Ib| i.i.d. random variables with mean ∆(f (k)) = Eπe [f
(k)(Z)− f0(Z)]. Since, we assumed that |f (k)(Z)|, |f0(Z)| ≤

HC1, a.s., by a Bernstein bound we have that w.p. 1− δ:

|∆̂k(f
(k))−∆(f (k))| ≤

√
2Eπe

[
(f (k)(Z)− f0(Z))2

]
log(1/δ)

|Ie ∩ Ik|
+

2HC1 log(1/δ)

|Ie ∩ Ik|
(32)

= ϵe(f
(k))

√
2K log(1/δ)

M
+

2HC1K log(1/δ)

M
(33)

Similarly, Λ̂k(f
(k), a(k)), is an average of |Ik∩Ib| i.i.d. random variables with mean Λ(f (k), a(k)) = Eπe

[a(k)(Z) (G(Z)−
f (k)(Z)].

Also recall we assumed that |G|, |f (k)|, |f0| are a.s. bounded by C1H and â(k), a0 are a.s. bounded by C2, by a Bernstein
bound we have that w.p. 1− δ:

|Λ̂k(f
(k), a(k))− Λ(f (k), a(k))| ≤

√
2Eπb

[
(Bi(f (k), a(k))−Bi(f0, a0))2

]
log(1/δ)

|Ik ∩ Ib|
+

4HC1C2 log(1/δ)

|Ik ∩ Ib|
(34)
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Note that:

Bi(g, a)−Bi(f0, a0) = a(Z) (G− f(X))− a0(Z) (G− f0(X))

= a(Z) (G− g(X))− a0(Z) (G− f(X)) + a0(Z) (f0(X)− f(X))

= (a(Z)− a0(Z))(G− f(X)) + a0(Z)(f0(X)− f(X))

Note (a+b)2 ≤ 2(a2+b2), and
√
a+ b ≤

√
a+

√
b (for any a, b ≥ 0), and again using our assumption that |G|, |f (k)|, |f0|,

â(k), a0 are almost surely bounded, we have that:√
Eπb

[(Bi(g, a)−Bi(f0, a0))2] ≤
√

2Eπb
[4C2

1H
2(a(Z)− a0(Z))2 + C2

2 (f(X)− f0(X))2]

≤
(
3C1Hϵb(a

(k)) + 2C2ϵb(f
(k))
)

≤ 3
(
HC1 ϵb(a

(k)) + C2ϵb(f
(k))
)

Thus we conclude that:

|Λ̂k(f
(k), a(k))− Λ(f (k), a(k))| ≤

(
HC1 ϵb(a

(k)) + C2ϵb(f
(k))
)
.

√
2 log(1/δ)

|Ik ∩ Ib|
+

4HC1C2 log(1/δ)

|Ik ∩ Ib|

≤ 3(HC1 ϵb(a
(k)) + C2ϵb(f

(k)))

√
2K log(1/δ)

N
+

4HC1C2K log(1/δ)

N

By applying a union bound over all the aforementioned 2K + 2 ≤ 4K bad events, we get that with probability 1− δ

|V̂ πe

DR − V πe | ≤ E1(δ/4K) + Ee(δ/4K) +
1

K

K∑
k=1

(∆(f (k)) + Λ(f (k), a(k)))

+
K

max
k=1

ϵe(f
(k))

√
2K log(4K/δ)

M
+

2HK log(4K/δ)

M

+ 3
K

max
k=1

3{HC1 ϵb(a
(k)) + C2ϵb(f

(k))}
√

2K log(1/δ)

N
+

4HC1C2K log(4K/δ)

N

Finally, note that:

∆(f) + Λ(f, a) = M(f, a)−M(f0, a0) (35)

with M(f, a) as defined in Theorem A.1. Then invoking Theorem A.1, we also get that:

∆(f) + Λ(f, a) ≤ ϵb(a
(k))ϵb(f

(k)) (36)

Combining all the above yields the theorem.

Theorem A.3. Given Assumption 4.2, and under the the same assumptions as Theorem A.2, if our estimates of the regression
function f and propensity weights / density ratio a are asymptotically consistent, at any rate, then V̂ πe

DR is a consistent
estimator of V πe .

Proof. The result immediately follows from Theorem A.2. Given |GH |, |f (k)(τh)|, |f0(τh)|, a(k)(τh), and a0(τh) are a.s.
bounded, terms 1,2,4 and 6 all go to zero as as N and M go to infinity. Terms 3, 5 and 7 also all go to zero when the
nuisance parameters f and a are asymptotically consistent.

Theorem A.4. Define the error in the predicted value as ∆(τh, f) = f(τh)− f0(τh) and the density ratio relative to the
true density ratio as δ(τh) =

a(τh)
a0(τh)

(where f0 and a0 are the true regression function and the true density ratio). Under

Assumptions 4.2, 4.3, the bias of V̂ πe

DR is

V̂ πe

DR − V πe =
1

K

K∑
k=1

Eτh∼πe

[
∆(τh, f

(k))
(
1− δ(k)(τh)

)]
, (37)

the average of the product-bias terms across the folds.
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Proof. Without loss of generalizability, we will now analyze this for a single fold k. Since each trajectory within a fold, is
independent and identically distributed, we will analyze the expectation for a single term with a single fold. We also now
make the expectation term explicit. We denote V̂ πe

k as the value of the DR-estimator for the k-th fold.

Eτh∼πb;τ ′
h∼πe

[V̂ πe

k ] = Eτ ′
h∼πe

[f (k)(τ ′h)] + Eτh∼πb
[a(k)(τh) (G− f (k)(τh))]

= Eτ ′
h∼πe

[f0(τ
′
h) + ∆(τ ′h, f

(k))] + Eτh∼πb
[a(k)(τh) (G− (f0(τh) + ∆(τh, f

(k)))]

= Eτ ′
h∼πe

[f0(τ
′
h) + ∆(τ ′h, f

(k))] + Eτh∼πb
[a0(τh)δ

(k)(τh) (G− (f0(τh) + ∆(τh, f
(k)))]

= Eτ ′
h∼πe

[f0(τ
′
h) + ∆(τ ′h, f

(k))] + Eτh∼πe [δ
(k)(τh) (G− (f0(τh) + ∆(τh, f

(k)))]

= Eτ ′
h∼πe

[f0(τ
′
h) + ∆(τ ′h, f

(k))] + Eτh∼πe [δ
(k)(τh) (f0(τh)− (f0(τh) + ∆(τh, f

(k))))]

= Eτ ′
h∼πe

[f0(τ
′
h) + ∆(τ ′h, f

(k))] + Eτh∼πe [−δ(k)(τh)∆(τh, f
(k))] (38)

= E[V πe

k ] + Eτh∼πe
[∆(τh, f

(k))(1− δ(k)(τh))] (39)
(40)

where the first equality holds because the first term depends only on trajectories from πe and the second is a function of
trajectories from πb; the second and third equalities use the definition of δ and ∆; the fourth equality uses the definition
of a0 to replace the expectation over πb to an expectation over πe; the fifth equality, with slight abuse of notation, takes
an expectation over the randomness in the observed reward for a given state trajectory and rely on f0 being the true
regression function, E[G(τh)] = f0(τh); the sixth equality simplifies the prior expression; and the seventh equality uses that
Eτ ′

h∼πe
[f0(τ

′
h)] = E[V πe

k ]. The theorem follows by averaging over each of the folds.

Theorem A.5. If the regression function f is asymptotically consistent, then V̂ πe

soft is a consistent estimator of V πe .

Proof. Recall

|V̂ πe

soft − V πe | =

∣∣∣∣∣ 1M
M∑
i=1

f(τ jh)− V πe

∣∣∣∣∣ (41)

=

∣∣∣∣∣ 1M
M∑
i=1

f(τ ih)− f0(τ
i
h) + f0(τ

i
h)− V πe

∣∣∣∣∣ (42)

≤ 1

M

M∑
i=1

∣∣f(τ ih)− f0(τ
i
h)
∣∣+ ∣∣∣∣∣ 1M

M∑
i=1

f0(τ
i
h)− V πe

∣∣∣∣∣ (43)

→ 0 (44)

In the third line, the first term goes to zero if f is asymptotically consistent, and the second term is the error due to the finite
sample approximation of the expectation Eτh∼πe [.], and also goes to zero asymptotically.

B. Experiments
We design a toy environment to evaluate the robustness of the proposed estimators to the regression model and the density
ratio estimator mis-specification. We assume a historical dataset of full-horizon observations as well as a smaller on-policy
dataset of the new target policy but only executed for short horizons. First we describe the details about the environment’s
states, transitions, returns, and surrogacy.

Domain Initial states s0 are evenly spaced between [0, 1.5] and added by a Gaussian noise ∼ N(0, 0.1). Under the
behavioral policy πb, transitions to the next state are as follows:

st+1 =


s0 w.p 0.5
(−0.6 + 0.1 ∗ U [0, 1)) ∗ st w.p 0.45
1.5 otherwise
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Under the new target policy πe, the next states are defined as:

st+1 =

{
1.5 if st < 1.25

0 otherwise
.

Every state is added a noise from N(0, 0.1). The true long-term return is defined by the quadratic function of τ0:1 as
f(s0, s1) = 5s0 + s1 + s21 +N(0, ω) where ω determines the amount of noise, i.e., the higher the ω, the more reliable the
regression estimates are compared to Monte Carlo sampling. |Db| = 5000, and |De| = 100.

We fit an ordinary least squares regression model using ‘statsmodel‘ packages. A correct regression model is given by:
fθ(s0, s1) = θ⊤[s0, s1, s

2
1]. For density ratio estimation, continuous states are discretized into 50 bins (thus making a total

of 2500 bins for (s0, s1)), and the density ratio estimator is built based on the number of occurrences of each bin under πe

versus πb. We report the mean squared error of the true and the estimated returns of the 100 target trajectories under πe:√
1

|De|
∑100

i=1(V̂
πe
i − V πe

i )2.

Table 3. We show the mean and standard deviation of Mean-Squared Error (MSE) over 200 random seed runs.

Large noise
(ω = 10)

Small noise
(ω = 1)

Soft surrogate estimator 0.251 (0.307) 0.002 (0.003)
Monte Carlo sampling 98.457 (13.355) 0.984 (0.133)

As discussed in the main text, Table 3 shows that our estimates using the short trajectory data provide more accurate
predictions of V πe than Monte Carlo sampling due to the high noise in the observed outcomes. This suggests that even
when decision makers have the budget for full-horizon observations, it may still be beneficial to consider soft surrogate
estimators due to the variance-bias trade-offs.

Model Mis-specification We now consider the robustness of the estimators under the model mis-specification. As
described above, a correct regression model is a quadratic function of (s0, s1): f(s0, s1) = 5s0 + s1 + s21. However, we
purposely use a mis-specified linear model, fθ̃(s0, s1) = θ̃⊤[s0, s1], which cannot describe the historical data distribution.
Note that this (mis-specified) linear model can still capture the data distribution under the target policy because s1 under πe

is always going to be either 0 or 1.5. As a result we expect the weighted regression and the doubly robust estimator to be
unaffected by the regression model mis-specification as long the density ratio estimates are correct, but the unweighted
regression will fail to predict for the target distribution.

In order to bias the density ratio estimates, we add a non-zero gaussian noise ∼ N(10, 10) to the denominator of p(s0,s1|πe)
p(s0,s1|πb)

.
We expect the unweighted estimator and the doubly robust estimator to be unaffected by the density ratio mis-specification
as the regressor model is still correct. While the weighted estimator is still asymptotically consistent, with finite samples, it
may suffer from the bias in density ratio estimates.

Table 4. We show the MSE of the estimators with noise ω = 1, when either the regression model or the density ratio model is mis-specified.
Mean and std are from 200 random seed runs.

Both Realizable Regression Misspecified Density Ratio Misspecified

Soft surrogate estimator 0.002 (0.003) 0.914 (0.064) 0.002 (0.003)
Short surrogate weighted estimator 0.079 (0.085) 0.080 (0.068) 0.388 (0.728)
DR soft surrogate estimator 0.008 (0.007) 0.008 (0.007) 0.006 (0.005)

Results Table 4 compares the performance of the 3 different estimators under different types of mis-specification. As
expected, the doubly robust method does well in all three cases. The weighted regression gives accurate predictions even
when the regression model is mis-specified as long as the density ratio estimates are correct. On the other hand, when the
density ratio estimates are incorrect, the unweighted regression and the DR estimator predict accurately. The weighted
regression suffers from the bias in density ratio estimates; but since it is also a consistent estimator, the effects due to the
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incorrect density ratio estimates are lessened as the training data size increases and the bias in the density ratio estimates are
swept away by the training data. We show that in Table 5 as the training data size increases from 500 to 50000, the MSE
drops from 2.123 to 0.259.

Our synthetic experiment demonstrates that the doubly robust estimator is robust to both kind of model mis-specification
as long as the other model is correct. The unweighted regression model has high errors when the regression model is
mis-specified; while the weighted regression shows high errors when the density ratio estimates are biased, which are
exacerbated if the historical data size is small.

Table 5. MSE of the weighted regression model across different training data sizes.

Training data size Error

500 2.123 (7.382)
1000 0.806 (1.281)
50000 0.259 (0.480)

C. Baseline Methods
LOPE estimator Saito et al. (2024) proposes an estimator that can be robust to the violation of surrogacy by additionally
accounting for the (unobserved) effect of the next action on the future states. Specifically their estimator is of the following
form:

V̂ πe

LOPE =
1

|Db|

|Db|∑
i=1

p(τ (i)|πe)

p(τ (i)|πb)
(G(i) − f̂(τ (i), a

(i)
h+1)

+Ea′
h+1∼πe(.|τ(i))f̂(τ

(i), a′h+1))︸ ︷︷ ︸
useful if surrogacy breaks

,

where f̂ is the empirical minimizer of Db defined as: 1
|Db|

∑|Db|
i=1

(
G(i) − f̂(τ (i), a

(i)
h+1)

)2
. They build robustness to the

violation of the surrogacy assumption via the second term. However, the LOPE estimator is originally designed for contextual
bandit policies, and thus only considers the (unobserved) effect of the immediate next action ah+1 on the future states, rather
than the full-horizon sequential RL policies.

Online-model based prediction We fit a transition model under the new target policy, p̂(st+1|st, at) using the on-policy
data De, and first predict the future (unobserved) states under the target policy, then predict the corresponding long-term
rewards for those states. Tran et al. (2024) considered settings where with sufficient coverage of the states and actions
in the short horizon data, the transition dynamics can be fully learned from the on-policy data alone. In such cases, the
online-model based prediction can provide accurate estimates.

Extrapolation of the average short-term reward We multiply the average reward observed within the short horizon by
the full horizon length (similar to the naive baseline in Tran et al. (2024)). This may be reasonable if the state sequences are
periodic, and the full cycle is captured in the short-horizon data.

Extrapolation of the last short-term reward This is a slightly different version of (3) where instead of taking the average
value, the last observed reward is multiplied by the full horizon length. This may be reasonable if the states reach an
equilibrium or only experience small deviations from the last state after the initial observation window.

Full-horizon Monte Carlo sampling This requires observing the full horizon outcome of the target policy, so it would
not be feasible in settings of our interest where the long-term outcome takes a prohibitively long amount of time to observe.
We include this to benchmark the performance of using a finite set of on-policy trajectories to estimate the long-term policy
value. Even though MC estimates are unbiased, their variance may be high if the on-policy data is limited, and using the
short-horizon soft surrogates may give smaller prediction errors due to the variance-bias trade-off.
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D. Clinical Simulations
D.1. HIV Treatment

Domain We generate 500 initial patient states with a perturbation rate of 0.05 using the simulator designed by Ernst et al.
(2005). The environment has no transition stochasticity, so if the policy is deterministic, the generated trajectories from a
given initial state and a policy are deterministic. We execute the target policy with perfect fidelity (ϵ = 0) for short horizons,
collecting 500 short-term trajectories; while the behavioral policy is executed with 0.95 fidelity, for 5 times per initial patient
state, which yields 2500 long-term trajectories. We do not compare our estimators to MC sampling in HIV because due to
the environment’s lack of stochasticity, we define the ground truth policy value as the average MC estimates.

Reward is given at every time step in the 200 horizon. It is determined by the number of free virus particles and the
HIV-specific cytotoxic T cells. Following RL standards, the return G is the un-discounted sum of rewards over the full
horizon.

Policy We first learn an optimal behavioral policy using Fitted Q Iteration (FQI). FQI is implemented with an extra-trees
regressor from ‘sklearn‘ packages with n estimators = 50 and min samples split = 2. An ϵ-greedy policy (ϵ = 0.15, except
when the policy is first initialized, ϵ = 1) is used for collecting on-policy samples under the newly fitted policy, and the
policy is rolled out 30 times between policy improvement. 400 Bellman backups are done with a discount factor of 0.98,
and we apply 10 iterations of policy improvement, each time using the replay buffer of all previously collected samples. T
We set πb to be the optimal policy from the last policy improvement step.

To model scenarios where a new policy is proposed by swapping some of the actions in the behavioral policy with the new
(improved) ones, we replace the small dosage actions in the behavioral policy with zero dosages. For example, this means
0.1 of RTI and 0.05 of PI in the behavioral policy is now zero dosage under the new target policy. We assume that the target
policy is executed with perfect fidelity, so ϵ probability of taking a random (sub-optimal) action is 0 under the new policy.
As stated before, the historical data has 2500 long-term patient trajectories, and the on-policy data only has 500 short-term
patient trajectories and unknown long-term outcomes.

We’ve included our code in the supplementary materials and the datasets and the codebase will be shared as a public repo
after the anonymous review process.

Soft surrogate estimator training details Density ratio estimators are implemented as binary classifiers with an MLP
classifier from ‘sklearn’ packages. Specifically, we set the labels for the off-policy trajectories as 0 and the labels for the
on-policy trajectories as 1. Hyperparameter selection is done with 5-fold cross validation to select the best model parameters
over the following sets of values:

• MLP hidden layer sizes: (128), (128, 64), (128, 64, 64)

• MLP α (l2 regularization): 0.001, 0.01, 0.1

• Learning rate: adaptive, constant

All models are implemented with the Adam optimizer and ReLU activation between the layers. The un/weighted regression
model is implemented with Support Vector Regressor (SVR module from ‘sklearn’), and we also did 5-fold cross validation
for hyperparameter selection over the following values:

• C (regularization): 0.1, 1, 10

• Epsilon: 0.001, 0.01, 0.1

For k-fold cross fitting of the doubly robust methods (Chernozhukov et al., 2018), we set k = 2.

Baseline methods training details We used the same model class and followed the same hyper-parameter selection
process for the LOPE estimator (Saito et al., 2024), which requires training the density ratio estimator and the regression
model. For the regression model, which takes as inputs the short-term trajectories and the last action, we one-hot-encoded
the discrete actions and concatenated the trajectory data with the actions.
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For training the online model-based RL, we implement the transition dynamics model with ‘sklearn‘ packages Multi
Output regressor (and SVR as a sub-module). Similarly as before, we performed 5-fold cross validation over the following
parameters:

• C (regularization): 0.1, 1, 10

• Epsilon: 0.1, 0.2.

The reward extrapolation baselines and MC sampling only require on-policy data, but no model training is required using
the historical data.

D.2. Sepsis

Domain We use the implementation by Oberst & Sontag (2019), which defines the patient state as a vector of 5 values: an
indicator for whether the patient is diabetic, and four vital signs–heart rate, blood pressure, oxygen concentration, glucose
level–that take values in a subset of {very high, high, normal, low, very low}. The state space size is 1440. The action space
sizes differ between the behavioral policy and the target policy. The behavioral policy chooses from two binary options of
antibiotics and mechanical ventilation, thus |A| = 4; while the target policy has an additional option of vasopressors, which
now makes |A+| = 8.

Each patient’s trajectory is at most 20 steps long, but may terminate early with -1 if at least three vitals are out of the
normal range, or with 1 if all vital signs are in the normal range without any active treatment. If the patient is either dead or
discovered, no further reward is given, and all intermediate states are rewarded by 0. We use a discount factor of 0.99 for
calculating the long-term policy value.

Policy Similar to Namkoong et al. (2020), we use policy iteration to learn the optimal policy, and create a soft-optimal
policy as the behavior policy by having the policy take a random action with probability 0.15. The value function is computed
using value iteration with the discount factor of γ = 0.99. Similar process is used to learn the target policy but with the
different action space A+, which includes includes vasopressors in addition to {antibiotics, mechanical ventilation} already
available in A.

In sepsis, the decision process is stochastic, so we define the true policy value as the average MC estimates of 5000 roll-outs.
In the on-policy dataset used to estimate the long-term value, we only include 500 bootstrapped samples, so the historical
dataset has 5000 full-horizon trajectories and the on-policy dataset only has 500 short-term samples. We evaluate our
estimators across 5 random seed runs to compute the mean and the standard deviation of the prediction mean squared errors.
In each seed run, the on-policy dataset has a different set of bootstrapped samples.

Soft surrogate estimator training details Since the Sepsis domain has a reasonably sized state space of 1440 discrete
states, we build the density ratio estimator ĥ based on the frequency of a given trajectory in the on-policy data versus the
off-policy data.

For fitting the regression model, we consider the following sets of hyperparameters to select the best performing hyperpa-
rameter from 5-fold cross validation are:

• MLP hidden layer sizes: (128), (128, 64)

• Learning rate: 0.001, 0.01, 0.1

All models are implemented with Pytorch MLP Regressor and ReLU activation between the layers.

Baseline methods training details In the sepsis simulator, if the patient is dead or discharged by h, their return is fully
known, so we consider online baselines where if the patient’s outcome is known by h, then there’s no error; and for those
whose outcomes are still unknown, their long-term returns are projected to be 0. Note that in the sparse reward setting like
sepsis, the two reward extrapolation methods – ‘final short-term reward’ and ‘average short-term reward’ – behave the same
since any unobserved patient outcomes (both average and last rewards observed so far are 0) are predicted to be 0 even in
the future.

20



Predicting Long Term Sequential Policy Value Using Softer Surrogates

Since the states are discrete with size 1440 and the actions are of size 8, we build an online dynamics model based on
the number of times a given tuple (s, a, s′) is visited from (s, a), p̂(s, a, s′) = N(s,a,s′)

N(s,a) . For any pairs of (s, a) that are
unobserved, we set the transition probabilities to the next state as uniform across the entire state space.

For fitting the regression part of the SLOPE estimator (Saito et al., 2024), we consider the following hyperparameters:

• MLP hidden layer sizes: (128), (128, 64)

• Learning rates: 0.001, 0.01, 0.1

All models are implemented with Pytorch MLP Regressor and ReLU activation is applied between the NN layers. We
one-hot-encode the actions and concatenate them with the short-term data to construct the inputs to the regression model
f(τh, a).

D.3. Computational Resources

Computation for all of the experiments was done on internal servers with GPUs, but they can be done without GPU with a
reasonable wall-clock time of less than 10 hours, which may vary depending on the size of the hyperparameter search space
and the number of folds for cross validation.

D.4. Additional Experiments

D.4.1. HYPOTHESIS TESTING OF THE ESTIMATED DIFFERENCE BETWEEN BEHAVIORAL POLICY AND TARGET
POLICY’S VALUE

While directly predicting the long-term policy value is our primary interest, we also consider the potential application of
using our methods to quickly identify whether the new target policy’s value is going to be significantly different from the
behavioral policy value. To handle this task, we propose running hypothesis testing to compare the observed long-term
returns under the behavioral policy and the estimated long-term outcomes of the new target policy. In the HIV domain, the
target policy and the behavioral policy are both executed from the same set of 500 initial patients, so we apply paired T-test;
while in Sepsis, they share the same initial distribution of the patients but the exact starting conditions may not match, so we
perform independent T-test. We use scipy.stats packages stats.ttest.rel for HIV and stats.ttest.ind
for Sepsis. In both domains, the behavioral policy value is significantly lower than the target policy. We are interested in
whether our estimators can successfully reject the null hypothesis with limited on-policy data from short horizons.

Table 7 shows the evaluation of our estimators at different short horizons and their corresponding p-values from running
the T-test to compare the estimated target policy’s returns and the observed behavioral policy’s outcomes. We included the
columns for h = 20 and h = 2 in the main text for the HIV and the Sepsis domains. Promisingly, our results show that in
the Sepsis domain, all our estimators achieve low MSE and significant p-values to successfully reject the null hypothesis
using the short-horizon data from h = 2. In the HIV domain, our estimators, particularly the soft surrogate estimator and
the DR soft surrogate estimator, require a longer h to be able to reject the null. Our weighted regression models can still
yield significant p-values with much shorter horizon of h = 5, which is 2.5% of the full horizon in the HIV simulations.

Interestingly we observe that the regression-based estimator’s performance does not improve monotonically as h increases
while the methods that rely more heavily on on-policy data improve monotonically with a larger h. We suspect this is due
to the increased covariate shift between the training and the test distribution. While increased h gives more signal about
the policy’s effects on the states and the rewards, the regression models are also trained on inputs of longer lengths, τ0:h,
which may affect the regression model’s variance if the training data is limited. We leave it as an interesting open question
to explore the selection of short horizon h to handle the trade-off between more signal in the data and higher variance in the
estimators.

D.4.2. EVALUATION ACROSS DIFFERENT TARGET POLICY VALUES

We considered a wider range of target policy values to evaluate the performance of our proposed estimators against the
baselines when the target policy’s value differs more or less than the behavioral policy’s value.

In the HIV experiments, we considered the case of the target policy replacing the behavioral policy’s small dosage with zero
and executed with perfect fidelity. We now introduce target policies where the small dosage is reduced by 25%, 50%, 75%,
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Table 6. HIV estimation results at different short-horizons: MSE and p-value from pair T-test.

h = 5 h = 10 h = 20 h = 50
Estimator Error p-value Error p-value Error p-value Error p-value

Soft surrogate estimator 68.16 p ≥ 0.5 68.15 p ≥ 0.5 67.15 p ≥ 0.05 57.96 p ≤ 10−6

Weighted soft surrogate estimator 61.84 p ≤ 10−6 71.51 p ≤ 10−6 53.21 p ≤ 10−6 53.85 p ≤ 10−6

DR soft surrogate 67.99 p ≥ 0.7 68.32 p ≥ 0.3 64.86 p ≤ 0.01 58.15 p ≤ 10−6

DR weighted soft surrogate 57.80 p ≤ 10−6 70.90 p ≤ 10−6 50.61 p ≤ 10−6 55.26 p ≤ 10−6

LOPE (Saito et al., 2024) 73.84 p ≤ 10−6 69.95 p ≤ 10−5 67.75 p ≥ 0.3 71.91 p ≤ 10−6

Table 7. Sepsis estimation results at different short-horizons: MSE (mean ± std across 5 seeds) and p-value from pair T-test.

h = 2 h = 4 h = 5
Estimator Error p-value Error p-value Error p-value

Soft surrogate estimator 0.04 (0.02) p ≤ 10−6 0.02 (0.01) p ≤ 10−6 0.02 (0.02) p ≤ 10−6

Weighted soft surrogate estimator 0.03 (0.01) p ≤ 10−6 0.01 (0.01) p ≤ 10−6 0.04 (0.01) p ≤ 10−6

DR soft surrogate 0.04 (0.01) p ≤ 10−6 0.01 (0.005) p ≤ 10−6 0.03 (0.01) p ≤ 10−6

DR weighted soft surrogate 0.03 (0.01) p ≤ 10−6 0.02 (0.004) p ≤ 10−6 0.01 (0.01) p ≤ 10−6

LOPE (Saito et al., 2024) 0.14 (0.25) p ≤ 10−6 0.10 (0.01) p ≤ 10−6 0.19 (0.13) p ≤ 10−6

Table 8. Each column represents a unique target policy, whose value is listed on the first row. The rest of the table shows the MSE
made by the estimators for each of the 8 target policies in the HIV domain. All estimates are made with the short-term data from
h = 20. The first 4 estimators are our proposals based on regression.

Estimator

Ground-truth policy value 350.55 417.37 419.94 404.87 342.49 411.18 407.44 401.89

Weighed soft surrogate estimator 0.61 66.78 68.57 53.21 8.68 62.16 56.07 51.6
Soft surrogate estimator 12.83 79.66 82.22 67.15 6.41 73.84 69.73 64.7

DR soft surrogate 10.49 77.19 79.83 64.86 8.93 66.94 67.38 65.53
DR weighted soft surrogate 2.35 69.14 71.07 50.61 2.63 64.41 57.87 51.69
LOPE (Saito et al., 2024) 13.43 80.26 82.83 67.75 5.38 74.06 70.33 64.78

Online model-based method 348.19 415.15 417.68 402.49 340.15 408.98 405.18 399.52
Last reward extrapolation 349.51 416.32 415.5 400.56 338.89 407.47 403 398.06

Average reward extrapolation 346.28 413.07 418.86 403.83 341.59 410.23 406.36 400.88

and 100% of the original amount, and each policy is executed with different levels of fidelity, i.e., we consider ϵ ∈ {0, 0.1},
which means with a probability of ϵ, the policy chooses a random action instead of the optimal action prescribed by the policy.
The resulting target policy values are: 350.55, 417.37, 419.94, 404.87, 342.49, 411.18, 407.44, 410.89. The behavioral
policy value is 337.01. We show the performance of different estimators–including our own and the baselines– across these
8 target policies in Table 8. In the HIV domain, we observe that our estimators outperform all the baselines across all target
policy values.

In the Sepsis domain, we considered new target policies with varying values of epsilon (ϵ in {0.01, 0.02, 0.05, 0.1, 0.2, 0.25,
0.3}). The target policy, whose results are reported in the main text, is executed with ϵ = 0.15. With different values of
epsilon, we get the following target policy values: 0.119, 0.110, 0.057, 0.019,-0.006, -0.022, -0.053, -0.065. The behavioral
policy value is -0.178. We show the performance of our estimators across different policy values in Table 9.

Surprisingly, we observe that the short-term reward extrapolation baselines perform well on 2 out of the 8 target policies. In
particular, these policies have small epsilon values of 0.01 and 0.02. When the epsilon is small, most of the patients, who
do not die or recover within the short horizon of h = 2, receive a reward of 0. Therefore, predicting the unknown patient
outcomes as 0, as done by the short-term reward baselines, actually yields good estimates close to the ground-truth values.
However, these baselines are brittle to the environment’s stochasticity as we observe that with higher epsilon values, most
patients’ outcomes are unknown from the short horizon. As the target (ground-truth) policy value deviates away from 0,
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Table 9. Each column represents a unique target policy, whose value is listed on the first row. The rest of the table shows the MSE
made by the estimators for each of the 8 target policies in the Sepsis domain. All estimates are made from the short-term data
from h = 2. The first four estimators are our own based on regression.

Estimator

Ground-truth policy value 0.119 0.110 0.057 0.019 -0.006 -0.002 -0.053 -0.065

Weighted soft surrogate estimator 0.15 0.10 0.08 0.06 0.03 0.04 0.02 0.03
Soft surrogate estimator 0.14 0.11 0.06 0.04 0.04 0.02 0.008 0.02

DR soft surrogate 0.13 0.11 0.07 0.04 0.04 0.03 0.01 0.01
DR weighted soft surrogate 0.13 0.10 0.10 0.08 0.03 0.02 0.01 0.03
LOPE (Saito et al., 2024) 0.39 0.09 0.05 0.07 0.14 0.06 0.06 0.16

Online model-based method 0.37 0.39 0.48 0.55 0.62 0.62 0.67 0.67
Last reward extrapolation 0.002 0.005 0.05 0.10 0.07 0.07 0.1 0.06

Average reward extrapolation 0.002 0.005 0.05 0.10 0.07 0.07 0.1 0.06

predicting the unknown patient outcome as 0 becomes a poor estimate. For example, when the epsilon is set to 0.25 or 0.3,
the reward extrapolation baselines incur the large error of 0.1 and 0.06 compared to the estimator’s MSE of 0.01 and 0.02.

Our experiments in the main text compare the performance of the estimators across different values of h, but the selection
of the short-horizon value remains an interesting open question in our work. Especially in real-life scenarios, where
decision-makers have leverage in deciding how long to run experiments for, the selection of h for the desired level of
prediction accuracy is important to discuss for practical considerations. Potential trade-offs between more signal from the
on-policy data versus increased observation costs as well as the increased covariate shift between the training and the test
data may factor into this decision.
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