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Abstract. Reinforcement learning has the promise to help reduce the
cost of creating effective educational software through automatically
adapting the experience to each individual. Most reinforcement learn-
ing algorithms aim to learn an automated pedagogical strategy that op-
timizes performance on average across the population and outputs a
decision policy that may rely on complex representations, like deep neu-
ral networks, that are largely opaque. Yet, in most educational contexts,
we would like a deeper understanding of educational interventions, such
as if the machine-learned pedagogical strategy differs in its benefits to
different students, how it differentiates instruction across individuals or
situations, and if the personalized strategy learned has benefits over al-
ternative personalizations or automated strategies. Here we explore such
analyses for a reinforcement learning decision policy for educational soft-
ware teaching students about the concept of volume. While some related
work covers part of these analyses, we suggest that conducting all three
such analyses can help enhance our understanding of the impact of a re-
inforcement learning decision policy in education and help inform stake-
holders’ decisions around the use of a particular learned decision policy.

Keywords: Reinforcement Learning - Conditional Average Treatment
Effect - Offline Policy Evaluation.

1 Introduction

Reinforcement learning algorithms can learn adaptive decision policies that map
from a context to an intervention in order to optimize an expected outcome.
Such algorithms hold great promise for optimizing educational software to best
support the learning experience of individual students. However, most reinforce-
ment learning algorithms optimize for outcomes on average, often employ com-
plex, hard-to-interpret models like deep neural networks, and frequently lack
formal guarantees of convergence to a globally optimal solution. Therefore, an
important area of inquiry is to better understand the impact of a particular
reinforcement learned pedagogical policy on different students.
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While some studies have examined the outcomes and implications of rein-
forcement learning policies in education, the amount of research conducted in
this area remains limited. Prior work on college students using a logic tutoring
system suggested that some students may be relatively insensitive to different
automated pedagogical policies, but some other students benefited significantly
from the RL policy personalization [3]. Concurrent to our paper, Abdelshiheed
et al.[1] found that an adaptive deep RL policy yielded substantial gains for
students who initially were unlikely to try new metacognitive strategies for a
logic tutor, but seemed to have little effect for students who already employed
such strategies. In the context of a machine learning method for video recom-
mendations for algebra learning, Leite et al.[4] used causal decision trees to
identify if subgroups of students significantly varied in their treatment effects.
To our knowledge, a more holistic set of analyses to understand the personaliza-
tion done by a learned reinforcement learning policy, and its impact on student
subgroups, has not been proposed.

To gain insight into the impact and effects of a personalization policy (high-
lighted in Figure 1), we suggest three useful analyses:

(R1) Subgroup Identification: Identifying subgroups of students according
to their differential treatment effect under the RL adaptive policy vs a
standard control.

(R2) Analysis of Personalization: Employing insights from the model inter-
pretation to analyze the difference in RL automated tutoring strategies
for different subgroups of students.

(R3) Impact of the Specific RL Personalization: Constructing alternative
policies and using offline policy evaluation methods to estimate the impact
of the specific RL policy personalization on subgroups of students.

We present a case study that uses these analyses to advance our understand-
ing. To do so, we use data from a study in which RL was used to personalize an
educational tool to help elementary school students learn about the concept of
volume.

2 Study Description

In the study on student learning of volume concepts, some students used a
narrative-based, artificial intelligent educational software tool. While thse stu-
dents work through a series of volume-related problems, the software can provide
adaptive support in response to student questions. The reinforcement learning
policy selects among four pedagogical strategies: providing direct hints, encour-
agement, Socratic questioning or prompting the student to reframe, or a simple
acknowledgment.

In this study, 270 participants in grades 3—5 were recruited from across the
United States. Children were randomly assigned to one of two conditions: a
standard interface that provided students with a volume practice task without
hints or a narrative and a condition with a storyline and a reinforcement-learning
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Fig. 1. Three useful Analyses of RL Personalization: (left) Understanding differential
treatment effects of the learned RL policy, vs a standard benchmark approach. (middle)
Features that describe differences in the learned decision policy. Blue and yellow icons
represent subgroups of students with different covariates (for example, low and high
pre-test scores). (right) Exploring if different personalization policies yield significantly
more or less effective teaching.

augmented agent. 67 children used the control system, and 203 children used
the system with RL agent-mediated guidance. Gender and grade were balanced
between the two conditions.

3 Analysis and Results

3.1 Student Subgroup Identification

We first examine if there are significant differences among subgroups in terms of
the impact of reinforcement learning vs. a control condition. Similar to Leite et
al. [4], we employ a subgroup treatment effect analysis using a two-stage cluster-
robust causal forest [10] to estimate the individual treatment effect and identify
subgroups. A causal forest is an ensemble of causal trees that have been grown
on a random subsample of the data during training to predict individual treat-
ment effect[2]. Causal forests are more robust to nuances of the data-splitting
procedure, but are a bit more limited for identifying consistent subgroups, which
may vary substantially across trees in the forest. Leite et al. [4] addressed this
by using a best linear analysis. However we are particularly interested in the
non-linear but interpretable benefits of decision trees. Therefore we proposed an
alternate heuristic method to identify the student subgroups and estimate the
subgroup-level treatment effect, which preserves a tree representation flexibility.
For our data, the student features we include are “gender” (0/1), “math anxiety”
(9-45), and “pre-test score” (0-8).

We first subsample 43% of our data to build the causal forest. Then we use
the R-loss[5], which calculates the expected difference between the estimated and
the true treatment effect, to select the best tree out of the ensemble. We follow
this tree’s decision rules and allocate students in each subgroup. Then we use the
holdout 50% of our data to calculate the conditional average treatment effects
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(CATE) for each subgroup. This constitutes an honest estimation and mimics
the procedures in honest forests. See Wager et al.[10] for a formal discussion.

We built a causal forest with 500 trees and a minimum node size of 7. Due
to the small size of the dataset, we further set the sample fraction that is used
to grow an individual tree to 0.8. The ’grf’ R package was used to fit the causal
forest [9]. We use a difference-in-means estimator to calculate the CATE for each
subgroup and construct the 95% confidence interval.
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Fig. 2. The best tree selected from the causal forest. It shows three identified subgroups
with the respective CATE for each group and the 95% confidence interval.

Three subgroups have been identified, with splits occurring based on the
features ‘math anxiety’ and ‘pre-test score.” We show them in Figure 2. Finally,
the holdout students (n = 154) are divided into subgroups determined by the
best causal tree before the respective CATE is calculated. Students with a low
pre-test score had the highest average group average treatment effect in our
tree: these students particularly benefited from the RL adaptive policy condition
compared to a simple control condition. The impact on other students overlaps
with zero, suggesting a slight negative or null result. This is consistent with past
work [3] that founds benefits in a logic tutor with RL most benefited students
who initially appeared to be struggling.

3.2 Analysis of Personalization

The learned RL policy uses a neural network to produce a probability distri-
bution over the four pedagogical strategies given an input learning context. In
previous work on this dataset, Ruan et al.[8] found that integrated gradients,
a method in explainable machine learning, suggested math anxiety and student
pre-test scores are the most influential student features to the policy’s decision-
making. Here, we compute the average probability of taking each action for the
student subgroups, created by taking the top and bottom 25%-quantile of both
features. We note that the two groups that exhibit the largest difference in terms
of probability between all actions are the students with high pre-test scores and
high math anxiety and students with low pre-test scores and low math anxiety.
However, a chi-squared analysis did not show a difference between the groups.
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Table 1. We show the average probability of policy taking each action in each student
subgroup. Top/bottom means the top or bottom 25% quantile of the pre-test score.
High/low means the top or bottom 25% quantile of the math anxiety.

RL Policy Action Top x High Bottom x Low Top x Low Bottom x High

Pr(Direct Hint) 57.6% 35.7% 50.7% 43.2%
Pr(Acknowledgment)  3.35% 18.3% 7.36% 8.14%
Pr(Encouragement) 20.6% 25.9% 27.9% 16.8%
Pr(Guided Prompt) 18.4% 20.1% 14.1% 31.8%

3.3 Impact of Personalization

In the previous section, we identified two subgroups of students that induce
the most difference in the action probabilities of the policy. We choose the two
subgroups to be the Top x High and Bottom x Low groups defined in Table 1.
We now explore the following counterfactual: if the policy had not assigned the
learned personalized interventions to these two groups of students, would we
have seen a difference in the learning outcomes of these two groups?

To explore this, we built an alternative anti-policy g, in contrast to our orig-
inal policy m. We construct mg with the following procedure: First, we compute
the maximum for both the pre-test and the math anxiety scores across all stu-
dents in group A (Top x High). We then replace the pre-test and math anxiety
scores for all students in group B (Bottom x Low) with these two maxima. All
other features in group B (negative/positive sentiment in text, failed attempts,
etc.) remain unchanged. Similarly, we take the original data in group B and
compute the minimum across all students for the pre-test and the math anxiety
scores in this group. Subsequently, we replace the corresponding feature values
in group A with these two minima. Again, all other features in group A remain
the same. This feature swap allows us to obtain a counterfactual policy without
re-training by rerunning the original policy on the alternated dataset.

An alternative to adaptive, differentiated policis is a static, non-personalized
decision policy. This might be particularly useful if sometimes student features
are noisy or mismeasured. Therefore, we also estimated the performance of a non-
personalized static policy 7, constructed by computing the average probability
of each action over all states: 7(a) = Eg[m(als)]. To estimate the performance of
these alternative policies, we use a popular offline policy evaluation technique:
weighted importance sampling [7], which allows us to use historical data col-
lected by policy 7 to compute the expected student improvement (Y) of mgs.

Let w; = [[1, 229 for the i-th student: E,, [V] = E,.,, [z{’*ﬂ] and

SN2 . .
Var.,(Y) = E;«,, [(ﬁ) (Y — Ex,[Y])?|. Suppose there is a significant
difference between E,[Y] and E.,[Y]. In that case, we can conclude that the
policy’s choice of personalization impacts these subgroups of students. We can

derive the variance of the weighted importance sampling estimator, with details
in Owenl[6].
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Table 2. Mean & variance of expected student performance improvement (WIS)

Sub-group E-[Y] Erg[Y] Ez[Y]
(Original) (Anti) (Static)

Top Pre-test x High Anxiety  0.42 (0.06) 0.26 (0.04) 0.33 (0.06)

Bottom Pre-test x Low Anxiety 3.55 (0.23) 1.71 (1.27) 3.21 (0.54)

We report our findings in Table 2. There is a significant benefit for both
student subgroups from using the original policy (see E;[Y]) over our estimate
of the alternate anti-optimized 74 (see E,[Y]). The potential change in perfor-
mance vs using the static policy is small, indicating there exists a static policy
that is robust to potential mismeasurement of student features. This provides
stakeholders options on which policy to implement.

4 Conclusion

Here we proposed analyses to help understand the personalization done by an
RL policy, and the impact outcomes. We apply our framework to data from a
real-life study on math tutoring, showing RL personalizes in an impactful way.
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